
No Training Hurdles: Fast Training-Agnostic Attacks to Infer
Your Typing

Song Fang
∗

University of Oklahoma

songf@ou.edu

Ian Markwood

University of South Florida

imarkwood@mail.usf.edu

Yao Liu

University of South Florida

yliu@cse.usf.edu

Shangqing Zhao

University of South Florida

shangqing@mail.usf.edu

Zhuo Lu

University of South Florida

zhuolu@usf.edu

Haojin Zhu

Shanghai Jiaotong University

zhu-hj@cs.sjtu.edu.cn

ABSTRACT
Traditional methods to eavesdrop keystrokes leverage some mal-

ware installed in a target computer to record the keystrokes for

an adversary. Existing research work has identified a new class of

attacks that can eavesdrop the keystrokes in a non-invasive way

without infecting the target computer to install a malware. The

common idea is that pressing a key of a keyboard can cause a unique

and subtle environmental change, which can be captured and ana-

lyzed by the eavesdropper to learn the keystrokes. For these attacks,

however, a training phase must be accomplished to establish the

relationship between an observed environmental change and the

action of pressing a specific key. This significantly limits the impact

and practicality of these attacks.

In this paper, we discover that it is possible to design keystroke

eavesdropping attacks without requiring the training phase. We

create this attack based on the channel state information extracted

from wireless signal. To eavesdrop keystrokes, we establish a map-

ping between typing each letter and its respective environmental

change by exploiting the correlation among observed changes and

known structures of dictionary words. We implement this attack on

software-defined radio platforms and conduct a suite of experiments

to validate the impact of this attack. We point out that this paper

does not propose to use wireless signal for inferring keystrokes,

since such work already exists. Instead, the main goal of this paper

is to propose new techniques to remove the training process, which

can make existing work unpractical.

CCS CONCEPTS
• Security and privacy→ Mobile and wireless security;

KEYWORDS
keystroke; correlation; eavesdropping attack

∗
This work was done at the University of South Florida. The author is now affiliated

with the University of Oklahoma.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00

https://doi.org/10.1145/3243734.3243755

ACM Reference Format:
Song Fang, Ian Markwood, Yao Liu, Shangqing Zhao, Zhuo Lu, and Haojin

Zhu. 2018. No Training Hurdles: Fast Training-Agnostic Attacks to Infer

Your Typing. In 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS ’18), October 15–19, 2018, Toronto, ON, Canada. ACM,

New York, NY, USA, 14 pages. https://doi.org/10.1145/3243734.3243755

1 INTRODUCTION
Sensitive information such as classified documents, trade secrets, or

private emails are typeset and input into a computer for storage or

transmission almost exclusively via a keyboard. Emerging research

work has identified a new class of attacks that can eavesdrop the

keystrokes in a non-invasive way [6, 7, 11, 12, 18, 21, 26, 28, 32, 37,

40, 42]. These new attacks eliminate the requirement to infect the

target computer with a keylogger or other malware to violate the

user’s privacy. Their common underlying principle is that pressing

a key on a keyboard causes subtle environmental impacts unique

to that key, which can be observed and correlated for all keys. For

example, an eavesdropper can set up a malicious WiFi router to

receive the wireless signal emitted by a target laptop. A user press-

ing a key causes a unique disturbance on the received signal, and

the eavesdropper can analyze these disturbances to learn which

key is pressed. In general, these non-invasive keystroke eavesdrop-

ping attacks can be classified into three categories, vibration based

attacks [21, 26], acoustic signal based attacks [7, 12, 37, 42], and

wireless signal based attacks [6, 11, 18].

These attacks also share a common weakness, that of requiring

a training phase to be at all effective. This establishes the rela-

tionships between observed environmental disturbances and spe-

cific key presses. During the attack phase, unknown disturbances

are compared with those recorded in the training phase to de-

termine which key was most likely pressed. However, the train-

ing significantly limits the impact of these attacks. Most existing

works [6, 7, 11, 18, 21, 26, 28, 32, 37, 40] assume the attacker has

some way to perform the training in a practical situation, but none

have provided technical details justifying their logistical feasibil-

ity. [12] proposes a practical way to collect keystrokes for training

by Voice-over-IP (VoIP) software (e.g., Skype), while this technique

targets the scenario when the attacker is able to talk with the target

user via VoIP calls.

Requiring training imposes a large practical hurdle for the at-

tacker - most users are in full physical control of their keyboards,

whether they are part of a laptop set in arbitrary locations or on

a roll-out keyboard tray (a common feature of desks). Anytime

https://doi.org/10.1145/3243734.3243755
https://doi.org/10.1145/3243734.3243755

a laptop is moved or a keyboard tray is pushed in or pulled out

slightly, any previous training efforts are invalidated. A user may

also change typing behaviors (heaviness of hand, etc.) during use

of the computer. Hence, training must be conducted frequently to

cope with all these changes. Because training requires knowledge of

what key is pressed to construct a mapping, and therefore requires

access to the system for some time, it is impossible to retrain once

the user has control of the system, and it is highly difficult to train

on systems controlled physically by the user (which are most).

In this paper, we make non-invasive keystroke eavesdropping

practical under realistic circumstances, by removing the training

requirement entirely. Not only does this make these attacks actually

possible, but it also makes them far less invasive still, because

physical access to the system is never required.

Intuitively, statistical methods provide a way to remove the train-

ing phase. Frequency analysis [16] is a typical unsupervised learn-

ing method based on the statistical observation that certain letters

normally occur with varying frequencies in a given language. In

English, the letter ‘e’ is the most often used. An input text of suf-

ficiently large size will have a distribution of letter frequencies

close to the typical distribution of English letters [3]. Since an en-

vironmental disturbance is associated with a key, by analyzing

the frequencies of observed disturbances, the attacker can possi-

bly determine the associated keys. Intuitively, the most frequently

observed disturbance is likely to be caused by typing the letter ‘e’.

However, statistical methods determine the typical distribution

of English letters by ingesting a large amount of text, while the

distribution within a small sample text may not be quite the same.

The discrepancy between sample and typical distributions is unpre-

dictable, so correlating observed environmental disturbances and

keystrokes requires collecting statistics over a long time period,

during which the environmental disturbances (e.g., wireless signal

properties) for different keystrokes must remain static as well as dis-

tinct from one another. In practice, these disturbances (especially

wireless signals) may change over the time due to environmen-

tal changes and mobility, preventing the attacker from collecting

sufficient reliable statistics for accurate keystroke inference.

We point out that this paper does not propose to use wireless

signal for keystroke inference, since existing work [6, 11, 18] has

been already proposed to infer keystrokes by using wireless signal.

All existing work requires a training process, which imposes a large

practical hurdle for the attacker. This paper aims to remove the

strong dependency of existing work on the training process to make

the keystroke inference attack a practical threat.

The challenges with using statistical methods motivate us to

develop an effective approach for non-invasive keyboard eavesdrop-

ping within a shorter time window. We analyze the self-contained

structures of words, which can be immediately observed by typ-

ing a single word, rather than probabilistic statistics among words,

which require many words to establish. In particular, we notice that

the repetition or uniqueness of characters in a word shows through

the structure of repeated or unique environmental disturbances

collected in the process of eavesdropping. For example, assume

that a user types “sense”, and accordingly the attacker observes five

environmental disturbances. The first and fourth observed distur-

bances are similar to each other, because they are caused by the

action of pressing the same key “s”. Similarly, the second and last

disturbances appear alike, because they are caused by pressing the

same key “e”. This structural information enables the attacker to

quickly identify the typed word, as only one word “sense” from

the 1,500 most frequently used words [13] matches this structure.

Thus, the search space quickly shrinks from 1,500 to only 1 word,

enabling a much faster establishment of a mapping between dis-

turbances and characters typed. This observation also requires no

prior interaction with the user’s system and thus facilitates fast and

accurate training-agnostic keyboard eavesdropping.

To exploit this observation, we must compare the correlations

among letters of words with those among observed disturbances.

This requires a self-contained feature that can quantify such corre-

lations and be compared against others. We identify and describe

herein such a feature, having three necessary characteristics. First,

it achieves high uniqueness to provide fast distinction among dif-

ferently structured words. Second, it can be extracted both from

words and sets of observed environmental disturbances, so the

two can be compared. Lastly, as more words are typed, their corre-

sponding structures can be captured and integrated with previous

information to refine and shrink the search space.

Using this feature, we create approaches to compare sets of

observed disturbances to possible candidate words. Our technique

hasmechanisms to adapt to and retain high accuracy in the presence

of natural noise and sudden environmental changes, which may

cause similar disturbances to appear different or vice versa. It is

similarly able to continue inferring letters in the presence of non-

alphabetical characters such as punctuation, navigation arrows,

delete and backspace keys, etc.

Our attack analyzes disturbances in a wireless signal, which can

penetrate through obstacles, so it does not require line-of-sight

between the attacker and the victim. External wireless devices con-

trolled by the attacker are used to collect the signal disturbances,

so there is no need for exploits to install malware on the target

computer. The attack is especially suitable for the wireless sce-

nario, since the wireless channel is time-varying and it can quickly

determine the disturbance-key relationship. Within a short time

window, the attacker can apply this relationship to infer the remain-

ing keystrokes, including typed words not in the dictionary.

We implement this attack on Universal Software Radio Peripher-

als (USRPs) X300 platform. The experiment results show that for a

sample input of 150 words, the proposed attack can recognize an

average 95.3% of these words, whereas frequency analysis can only

recognize less than 2.4%. We also note that the attacker only needs

1-2 minutes to collect 50 words to identify the disturbance-key rela-

tionship that allows a word recovery rate of 94.3%. The attacker is

also able to reach a word recovery ratio of 86% in the presence of a

classification error rate as high as 20%. Furthermore, we show that

the attacker can effectively decrease the entropy of a 9-character

password from 54.8 bits to as low as 5.4 bits, vastly reducing the

maximum brute-force attempts required for breaking the key from

31.08 quadrillion to just 42.

We also emphasize while the proposed attack targets English, it

can be extended to other languages, because similar to English, the

letters of any language are correlated and combine in some ways to

form words. Thus, as long as these word structures are identified,

the proposed attack can be easily customized for a target language

to map correlations among observed disturbances to those among

letters of words. In this paper, as a proof-of-concept, we focus on

English, since it is widely used.

The rest of the paper is organized as follows. Section 2 describes

background information. Section 3 explains the proposed attack

and Section 4 presents experiment results. Possible defense methods

are discussed in Section 5. Sections 6 and 7 lastly describe related

work and conclude this paper.

2 PRELIMINARIES
Because wireless signals can penetrate through obstacles [4, 5, 27],

we monitor this environment for our training-agnostic attack to

remove the line-of-sight requirement. Without loss of generality,

in this paper, we choose the channel state information (CSI) to

capture the wireless signal disturbance caused by keystrokes. In

the following, we impart preliminary knowledge about CSI and the

general method used by existing work employing CSI to launch the

keystroke eavesdropping attack.

2.1 Channel State Information
As discussed earlier, finger movement can induce disturbances into

the surrounding wireless signal. The disturbances can be quantified

by the CSI measurement [15], which describes how the wireless

channel impacts the radio signal that propagates through the chan-

nel (e.g., amplitude attenuation and phase shift).

The orthogonal frequency-division multiplexing (OFDM) tech-

nique is widely used in modern wireless communication systems

(e.g., 802.11a/g/n/ac/ad). OFDM utilizes multiple subcarrier frequen-

cies to encode a packet, and the channel frequency responses mea-

sured from the subcarriers form the CSI of OFDM. The channel

frequency response at time t is denoted by H (f ,t), where f repre-

sents a particular subcarrier frequency, and it is usually estimated by

using a pseudo noise sequence that is publicly known [15]. Specifi-

cally, a transmitter sends a pseudo noise sequence over the wireless

channel, and the receiver estimates the channel frequency response

from the received, distorted copy and the publicly known original

sequence. LetX (f ,t) denote the transmitted pseudo noise sequence.

Based on the received signal Y (f ,t), H (f ,t) can be calculated by

H (f ,t) =
Y (f ,t)
X (f ,t) . Existing work utilizes the amplitude of CSI to

extract keystroke waveforms [6, 18]. In this paper, we also explore

the amplitude of CSI and refer to this as just “CSI” in the following.

2.2 Existing Work on CSI-based Keystroke
Inference

Researchers have proposed to utilize CSI to recognize subtle human

activities, including mouth movements [34] and keystrokes [6, 18].

Existing techniques ([6, 18]) on CSI-based keystroke inference as-

sume that the attacker typically sets up a wireless transmitter and

receiver in the close proximity of the target keyboard. If the key-

board is part of a computer like a laptop that can connect to wireless

networks, the computer itself transmits the wireless signal when-

ever it needs to exchange information with the WiFi router, and

thus it can play the role of the transmitter for the attacker. The

receiver can then be a malicious 802.11 access point that provides

free WiFi service to attract victim computers to connect to it. In

a general case, the attacker can also create a custom transmitter

and receiver using software-defined radio platforms such as USRPs.

The transmitter transmits the wireless signal to create a radio en-

vironment, and the receiver receives the signal from the wireless

channel and computes the CSI.

These techniques normally use three steps to infer keystrokes,

namely, pre-processing, training, and testing. Pre-processing re-

moves noise from the CSI, reduces computational complexity for

the keystroke inference, and segments the time series of the CSI

into individual samples that correspond to keystrokes. The training

phase records each keystroke and the corresponding CSI so that a

training model for classification can be built. In the testing phase,

an observed CSI for an unknown keystroke is matched within the

training model to determine which keystroke it corresponds to.

The training-agnostic attack described in this paper uses the same

pre-processing step as these existing techniques.

3 ATTACK DESIGN
Existing work requires a training process to construct the rela-

tionship between observed CSI and keystrokes. We propose to

remove the requirement of the training phase by quantifying the

self-contained structures of words to recognize keystrokes without

training. We next detail the necessary technical components we

have developed.

3.1 System Overview
We consider a general attack scenario, where the attacker uses

a customized transmitter and receiver pair to launch this attack.

The attacker can constantly transmit the wireless signal, or just

whenever typing activity is detected. In the latter case, a WiFi

packet analyzer can detect when a user starts to type [18]. We also

assume that the typed content is in English, though the attack can

target other languages just as easily.

The receiver needs to collect the CSI, so the attacker implements

a channel estimation algorithm such as the one mentioned in Sec-

tion 2.1 on a software-defined radio platform. The input of the

algorithm is the wireless signal received over the wireless chan-

nel, and the output is the CSI. The channel estimation algorithm

computes the CSI based on the received signal, which is a contin-

uous wave. Thus, the CSI returned by the algorithm forms a time

series, and this stream is divided by the pre-processing step into

individual segments that correspond to the actions of pressing a

key. In this paper, we refer to a segment as a CSI sample. After
pre-processing, unlike the existing methods, the training-agnostic

attack described in this paper takes three different important steps

to infer keystrokes, namely CSI word group generation, dictionary

demodulation, and alphabet matching.

CSIword group generation partitions the CSI samples into groups

corresponding to each typed word. The attacker will explore the

correlation among and order of unique letters in each word to infer

keystrokes, and thus needs to separate the stream into words. This

step performs this task by identifying the CSI samples caused by

pressing the space key, since words are almost always separated by

a space. Dictionary demodulation aligns the correlation of CSI sam-

ples to that of letters in a word, so as to find the corresponding word

for a CSI word group. Based on the demodulation result, potential

mappings are formed between CSI samples and keystrokes, with

CSI sample CSI sample CSI sample CSI sample

The time series of CSI

F R O M

A
m

p
lit

u
d

e

CSI word group

Figure 1: The CSI word group for the word “from”.

which the attacker can infer the remaining typed words, including

those not appearing in the dictionary.

3.2 CSI word group generation
CSI word group generation involves classification, sorting, and

word segmentation.

3.2.1 Classification. Dynamic Time Warping is a classical tech-

nique tomeasure the similarity between two temporal sequences [29],

and it has been widely used to identify the spatial similarity be-

tween the signal profiles of two wireless links [6, 17, 18, 36]. Thus,

to quantify the similarity between two CSI samples, we utilize

the Dynamic Time Warping technique to calculate the distance

between them. A small distance indicates that both CSI samples

are similar and accordingly that they originate from the same key.

Conversely, a large distance indicates that they deviate from each

other, and that they are caused by two different keys. We assume

that the victim user presses a single key at a time, since this is the

common typing behavior for most keyboard users.

3.2.2 Sorting. Since the space character is almost always used to

connect consecutive words, it normally appears more frequently

than any other characters in a long text. We thus expect that the

CSI sample caused by the space key also appears more frequently

than other CSI samples. The classification outcome includes mul-

tiple sets, each consisting of similar CSI samples. We sort the sets

according to size and associate the space key with the largest set, so

that all observed CSI samples in this set are assumed to be caused

by pressing the spacebar. If this association is incorrect, we will

ultimately not be able to recover meaningful English words. In that

case, we continue on, associating the space key to the second largest

set and reattempting the same recovery process. We try these sets

from largest to smallest cardinality until we successfully recover

meaningful English words or exhaust all sets.

3.2.3 Word Segmentation. Once the set of CSI samples associated

with the space key is identified, we can start the word segmentation

process to find the CSI samples comprising each word of the typed

content. Everything between two successive CSI samples from the

space-associated set are grouped together. In the following, we refer

to such a group as a CSI word group, and this does not include the

spaces at either end. CSI word groups will be used as the input

of the dictionary demodulation method to eventually establish

the complete mapping between the CSI samples and keystrokes.

Figure 1 is an example of the CSI word group for the word “from”

which consists of samples that are caused by typing letters ‘f’, ‘r’,

‘o’, and ‘m’.

3.3 Dictionary Demodulation
Dictionary demodulation converts CSI word groups to correspond-

ing English words. We begin by developing a feature to apply to

these CSI word groups suitable for narrowing down the search

space of possible candidates. Then we show how to apply this

feature to words and sentences and handle errors.

3.3.1 Feature Selection. Ideally, a feature extracted from each CSI

word group would enable us to uniquely determine the correspond-

ing word. If the dictionary has n words, a perfect feature would

classify the n words into n groups, each having one member only,

such that an input CSI word group can uniquely match to a word

based on this feature. Our strategy is thus to find a feature that can

divide all words in the dictionary into as many sets as possible, to

achieve high distinguishability.

Due to the lack of training, we have to identify a feature from

only the self-contained relationships among the letters of a word

(the CSI samples of a CSI word group). Without knowing the exact

letters in a word, but having a CSI sample for each letter, we can

determine the number of constituent letters and whether or not any

letters in the word are repeated. These two pieces of information

yield two features to partition words, and we utilize a top 1,500

most frequently used word list [13] as the dictionary to calculate

the number of sets divided by each. To quantify the distinguisha-

bility of a feature, we define a new metric, called the uniqueness
rate, as the ratio Tp/T , where T is the number of considered words,

andTp represents the number of sets obtained by dividingT words

according the selected feature. The uniqueness rate should be max-

imized for the best partitioning of the words. We next evaluate the

uniqueness rates for our two features:

Length: We empirically find that all words in this dictionary are

1-14 characters long. If we choose length as the only feature, we can

divide all words into 14 sets, the members of each set having the

same length. Only two words (i.e., ‘administration’ and ‘responsibil-

ity’) in the dictionary are of length 14; therefore a CSI word group

of length 14 has only two candidates. On average, however, each

set has 1,500/14 ≈ 107 words. This means that an input CSI word

group will have an average of 107 possible candidate words based

on the length feature. The uniqueness rate is then 14/1,500 ≈ 0.009.

CSI Sample Repetition: We also count the number of distinct let-

ters that repeat. We denote the repetition information of a word

as Sr , and we set Sr = 0 if no repetition is found. Otherwise, we

denote Sr by (t1, · · · ,tr), where r is the number of distinct letters

that repeat, and ti (i ∈ {1, · · · ,r }) denotes how many times the cor-

responding letter repeats. For example, the repetition information

for the word “level" should be (2, 2), because 2 different letters (‘l’

and ‘e’) repeat, and both letters repeat twice respectively. Consider-

ing a word of length L, we can quantify the repetition information

using (L,Sr). Using this repetition information, we can then di-

vide all 1,500 words into a total of 63 sets, such that members of

each set share the same value of (L,Sr). On average, each set has

1,500/63 ≈ 24 words, so an input CSI word group will be mapped

to one of 24 words based on this feature. The uniqueness rate is

then 63/1,500 ≈ 0.042.

The repetition feature has better distinguishability than the

length feature, because its larger uniqueness rate yields a smaller

average set cardinality, and hence a reduced search space to map

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	

U
ni
qu

en
es
s	
 r
at
e	

Word	
 length	

Repe??on	

Rela?onship	
 matrix	

Figure 2: Uniqueness rate for words of different length.

The number of letters in a phrase
 4 6 8 10 12 14 16 18 20 22 24 26

U
n
iq

u
e
n
e
s
s
 r

a
te

0

0.2

0.4

0.6

0.8

1

Figure 3: Uniqueness rate for joint words.

an input CSI word group to a word. The repetition feature only

provides the result of repeated letters in a word, however, and does

not consider the position information of these letters. We expect

that the uniqueness rate can be further increased if we construct

a feature that not only employs the word length and repetition

information, but also distinguishes the positions of repeated letters

from non-repeated letters.

3.3.2 Inter-Element Relationship Matrix. We define a new data

structure to represent the structure of every word/CSI word group.

Specifically, we denote a word or a CSI word group by a vector

[x1, . . . ,xn] of n elements, each of which is a letter (CSI sample).

We then define its inter-element relationship matrix as

M : [x1, . . . ,xn] 7→



r1,1 r1,2 r1,3 . . . r1,n
r2,1 r2,2 r2,3 . . . r2,n
. .

rn,1 rn,2 rn,3 . . . rn,n



.

To constructM , for a CSI word group [x1, . . . ,xn], we set ri,j = 1 if

xi and x j are similar CSI samples as classified during the CSI word

group generation step (Section 3.2). Otherwise, we set ri,j = 0. Note

the diagonal elements are always 1 and the matrix is symmetric.

We build the inter-element relationship matrix for each word and

ultimately partition the 1,500 most commonly used words into 337

sets. The words in a particular set having the same inter-element

relationship matrix. On average, each set has about 1,500/337 ≈

4 words which are possible candidates for the CSI word group

having that inter-element relationship matrix. The corresponding

uniqueness rate is 337/1,500 ≈ 0.225, which is much larger than

those of the previously discussed features.

Empirically, we find that the uniqueness rates for words of differ-

ent lengths are not evenly distributed, and this fact actually enables

our scheme. Figure 2 presents the uniqueness rates for the inter-

element relationship matrix as well as the repetition feature for

comparison, respective to word length. The relationship matrix

clearly performs much better than the repetition feature in all cases,

but very evident also is that as words become larger, they become

more uniquely structured, leading to high uniqueness rates for the

relationship matrix feature. For example, the uniqueness rate for a

3 letter word is 0.025, while that for a word of 10 letters is 0.940.

Indeed, a phrase comprised of multiple words can be considered

as one “long word” for the purpose of generating an inter-element

relationship matrix, though the dictionary must also expand to

contain these combinations. Assuming a phrase formed byN words,

the new dictionary will include T1T2 · · ·TN phrases, where Ti (1 ≤
i ≤ N) is the size of the set of candidate words having length equal

to the i-th CSI word group. Figure 3 illustrates how the uniqueness

rate benefits from the combination of each pair of two words from

the dictionary of 1,500 most used words. The words in each pair

range from 2 to 13 characters in length, for a possible total of 4-26

characters. The uniqueness rate jumps as the length of these word

pairs increases, and after 18 total characters, the pair of words has

a fully unique structure. This indicates that within a few words it

should always be possible to narrow down to the specific content

the victim is typing, giving rise to our joint demodulation method.

3.3.3 Joint Demodulation Example. Before describing the general
joint demodulation technique, we first show a simple clarifying

example to illustrate how to demodulate the CSI word groups. As-

sume that a simple dictionary W = {‘among’, ‘apple’, ‘are’, ‘hat’,

‘honey’, ‘hope’, ‘old’, ‘offer’, ‘pen’}. Further assume that the user

types in two words “apple” and “pen”. We denote the CSI word

groups corresponding to these typed words by c1 | |c2 | |c3 | |c4 | |c5 and
c6 | |c7 | |c8, respectively, where ci is the i-th observed CSI sample

after identification and removal of spaces.

Due to the previously discussed consistency between CSI sam-

ples for the same character, samples c2 and c3 within the first CSI

word group are similar. The inter-element relationship matrix R1 is
correspondingly

c1 c2 c3 c4 c5




c1 1 0 0 0 0

c2 0 1 1 0 0

c3 0 1 1 0 0

c4 0 0 0 1 0

c5 0 0 0 0 1

.

Matrix R2 is constructed in the same way for the second word. Com-

bining both words and considering all similar CSI samples forms

the joint sequence c1 | |c2 | |c3 | |c4 | |c5 | |c6 | |c7 | |c8, and likewise the new
inter-element relationship matrix Rnew can be obtained. To search

the dictionaryW for these CSI word groups, we pre-compute the

inter-element relationship matrix for each word inW. We compare

each with R1 and find the words “apple” and “offer” survive this

test. Each is compared with R2, and “hat”, “old”, “are”, and “pen”

survive the test for the second word group. The 8 resulting candi-

dates for the two-word sequence are thus “apple| |are”, “apple| |hat”,

“apple| |old”, “apple| |pen”, “offer| |are”, “offer| |hat”, “offer| |old”, and

“offer| |pen”. We use T to denote the set of these candidates. Again,

we generate the relationship matrix for each new candidate in T
and compare it with Rnew . Only “apple| |pen” survives this test and

must be the final result.

3.3.4 General Joint Demodulation Method. In the following, we

extend the joint demodulation method utilized in this example tom
CSI word groups. After CSI word group generation, assume that the

attacker obtains from the eavesdropped typingm CSI word groups

denoted by S = {S1,S2, . . . ,Sm }. We further use W1,W2, . . . ,Wq
to denote the q words in the dictionary W. Our goal is to find a

phrase of m words that corresponds to the m CSI word groups.

Clearly, while each individual CSI word group could have several

candidate dictionary words withmatching structure, each candidate

will impose a mapping of some CSI samples and letters on some

successive words, and several of these possible mappings will result

in successive words that are not real, so the below technique works

to rule out these impossible mappings. The full method includes

two steps: 1) demodulation of each single CSI word group; and 2)

joint demodulation of multiple CSI word groups.

Step 1: This step finds initial candidate words for each CSI word

group or determines if a word cannot be immediately demodulated

and must be returned to later. We first create the inter-element

relationship matrices forW1,W2, . . . ,Wq in our dictionaryW. We

next iterate over each Si ∈ S, creating its inter-element relationship

matrix and considering the subset W′ of W whose entries are of

the same length as Si . We compare the relationship matrix of Si
to that of eachWj ∈ W′ and mark thatWj as a candidate if the

two matrices are equal. If no candidates match, the word must not

appear in the collection of English words comprising our dictionary,

so we add Si to the “undemodulated set” U.
Step 2: This step works to build up a mapping between CSI

samples and letters that works for multiple CSI word groups simul-

taneously, successively ruling out the many candidates established

by the first step, until (ideally) only one candidate remains for each

word and the message is uncovered. Conceptually, we iterate over

the word groups not in the undemodulated set U,
(a) concatenating each with all those previous,

(b) applying each possible mapping thus far constructed,

(c) ruling out all candidates that cannot coexist with any mappings,

(d) and adding any new CSI sample/character mapping information

from the remaining candidates.

Specifically, we name Ti the concatenation of the first i − 1 CSI

word groups {S1, . . . ,Si−1},1 < i ≤ m, excluding any Sk ∈ U. In
other words, while considering Si , we concatenate all the previous
CSI word groups which have candidates into Ti . Candidates for
Ti , or groups of valid words satisfying the structures of the CSI

samples comprising Ti , are denoted by TiC = {Ti1 ,Ti2 , . . . ,Tip }.
Further, candidates for Si , as determined by Step 1, are denoted by

SiC = {Si1 ,Si2 , . . . ,Siq }. With Ti | |Si signifying the concatenation

of Ti and Si , we calculate the inter-element relationship matrix for

Ti | |Si , as well as that for every Ti j | |Sik ,Ti j ∈ TiC ,Sik ∈ SiC . We

note that this is p × q matrices to be compared and that this series

of comparisons happens at each iteration; we analyze the time

complexity in Section 4.3, and our experiments show the number of

comparisons converges quickly over successive iterations. Then, if

the relationship matrix for one suchTi j | |Sik matches that forTi | |Si ,
we know that the CSI sample/character mapping of the candidate

Algorithm 1 Joint Demodulation

1: procedure Joint_Demod(Si , TiC , SiC , U)
2: T(i+1)C ← ∅ (i > 0)
3: for Ti j in TiC do
4: for Sik in SiC do
5: if M (Ti | |Si)=M (Ti j | |Sik) then
6: T(i+1)C ← T(i+1)C ∪Ti j | |Sik
7: end if
8: end for
9: end for
10: if T(i+1)C = ∅ then ▷ no candidates, skip Si
11: U← U ∪ Si
12: T(i+1)C ← TiC
13: end if
14: return T(i+1)C , U
15: end procedure

Sik will work in concordance with the mapping established for

Ti j while maintaining the structure stipulated by Ti | |Si . Each such

Ti j | |Sik is therefore a new candidate for Ti+1.
In the event that no Ti j | |Sik has a relationship matrix matching

that for Ti | |Si , this means that no CSI sample/character mappings

satisfying the structure of Ti result in valid words within our dic-

tionary when applied to Si . Such Si are placed in U and execution

skips to Si+1. Pseudocode for this step is shown in Algorithm 1.

In this manner, we iterate over i and gradually build up Ti until
all distinct CSI samples are mapped to characters in the alphabet.

At this time, the mapping can be applied to the remaining word

groups, including those in U, for which no matches were found in

the dictionary used. An example of this final alphabet matching is

visible in Figure 4.

3.3.5 Error tolerance. Wireless channel noise may cause CSI clas-

sification errors, such that a recorded CSI sample for a character

typed might not appear like others for that character or may appear

like a different character. Otherwise, CSI samples may be classified

correctly but a typo by the user may mean a word is misspelled and

will not appear in the dictionary. This can cause a concatenated set

of CSI word groups to have an incorrect inter-element relationship

matrix, which may match with invalid words or have no candidates

at all. The latter is the ideal case as the word group having the CSI

sample in question will simply be added to the undemodulated set

and skipped. However, if invalid words are incorporated into the

candidates for joint demodulation, incorrect relationship matrices

will continue to be used as the joint demodulation progresses, and

the content recovery will fail. We have observed in experiments that

even if a wrong matrix matches to other word sequences, cascading

discovery failures inevitably happen for successive words.

The attacker may employ this observation to work around the

presence of typos or CSI classification errors. If a CSI word group

is successfully demodulated but continuous recovery failures occur

thereafter, this word can be added to the undemodulated set and

skipped in favor of proceeding with the next word. Further word

groups are thus less likely to be processed with an incorrect portion

of the relationship matrix, and a correct mapping is more probable.

Algorithm 2 shows how our system checks for cascading errors at

CSI word group 1 CSI word group 2 CSI word group 3

space space

apple hat old

a p l e h t o d

dictionary demodulation

alphabet matching

d e e d ?? o ?? l d

after matching

space space

space

Figure 4: Assume a simple dictionary of three words “apple”,
“hat”, and “old”, typed in that order by the user. The alphabet
of this dictionary consists of 8 letters “a”,“p”,“l”,“e”,“h”,“t”,“o”,
and “d”. Dictionary demodulation maps each letter in this
alphabet to the corresponding CSI sample, and any further
CSI word groups may simply have this mapping applied
to them. After matching, suppose the user then types the
word “deed", the attacker can directly demodulate the ob-
served CSI word group, which did not appear in the dictio-
nary. Next, assume instead the second typedword is “would”.
Since “w” and “u” do not appear in the alphabet of this sim-
ple dictionary, the attacker cannot decode them but can con-
tinue decoding the other letters “o”, “l”, and “d”.

Algorithm 2 Error Handling

1: [T(i+1)C ,U] = Joint_Demod(Si ,TiC ,SiC ,U)
2: if T(i+1)C , TiC then ▷ demodulation success

3: F ← allowable failure threshold

4: f laд ← true

5: for j ∈ {i + 1, · · · ,i + F } do
6: [T(j+1)C ,U]=Joint_Demod(Sj ,TjC ,SjC ,U)
7: if T(j+1)C,TjC then ▷ demodulation success

8: f laд ← false; break ▷ reset failure count

9: end if
10: end for
11: if f laд then ▷ reached failure threshold

12: U← U ∪ Si ▷ skip Si
13: T(i+1)C ← TiC
14: end if
15: end if

each step i based on the demodulation result for Si . Finally, when
the mapping is complete and applied to the CSI word groups in the

undemodulated set, any errors in CSI classification or typos will

persist, but not further damage the results. The attacker can use

some common knowledge to work out these errors and any other

ambiguities.

In the event the cascading errors do not seem to be avoidable,

this is evidence that the wireless channel has changed, because as

previously mentioned the wireless channel is time-varying. In this

case, the dictionary demodulation may be begun anew, so that the

attack can adapt to the changes.

3.3.6 Impact of Non-Alphabetical Characters. Users mostly type al-

phabetical characters and spaces, but also occasionally use numbers

and punctuation, which obviously cannot be matched by examining

word structures. If these appear during alphabet mapping construc-

tion, they will cause cascading demodulation errors, be added to

the undemodulated set, and be skipped, similar to typos or CSI clas-

sification errors as just discussed. If the mapping has already been

constructed, the CSI samples for these numbers or punctuation will

not appear in the mapping and will be left as unknown. In both

cases, the attacker can use some common knowledge to infer or

narrow down candidates for these characters.

For example, users press the backspace key to remove multiple

characters before the cursor and then continue typing. For a CSI

word group that is recovered as “abab××out”, the attacker may

recognize that the unidentified character “×” corresponds to the

backspace key and that the word should be “about”. In another case,

a user may press the left arrow key to move the cursor backward,

insert some text, and then press the right arrow key to return the

cursor to the original position. Hence, the left and right arrow

keys often appear in pairs and are each pressed multiple times. In

this way, an attacker may infer the word “about” from a CSI word

group recovered as “aut◁◁bo▷▷”, with unidentified samples “◁” and

“▷” corresponding to left and right arrow keys, respectively.

4 EXPERIMENT RESULTS
We implement the training-agnostic keystroke eavesdropping at-

tack using USRPs. The prototype attack system includes a wireless

transmitter and a receiver. Each node is a USRP X300 with 40 MHz

bandwidth CBX daughterboards [14]. The channel estimation algo-

rithm runs at the receiver to extract the CSI for key inference.

The target user operates a desktop computer with a Dell SK-8115

USB wired standard keyboard. The transmitter and the receiver

are placed at opposite positions relative to the keyboard. We place

the transmitter at a distance of 3 meters away from the keyboard,

and the receiver under the 2 cm-thick desk, at a distance of 50

cm away from the keyboard. Also, there is a 4 cm-thick wooden

barrier between the transmitter and the keyboard. Thus, both the

transmitter and the receiver are not within line-of-sight of the

target user. We also form a dictionary using the top 1,500 most

frequently used English words [13].

4.1 Example Recovery Process
In this section, we will demonstrate the process of recovering a

sample user’s typed text to illustrate the attack and the sort of

performance that may be expected.

CSI Sample Extraction: To extract the CSI samples from the

CSI time series, we utilize the same pre-processing step as these

existing techniques [6, 18]. Correspondingly, we implement the

pre-processing through three phases, which are noise removal,

Principle Component Analysis (PCA) [30], and segmentation. First,

we experimentally observe the frequency of the CSI influenced by

keystrokes always lies within a low frequency range of 2 to 30 Hz.

Thus, we utilize a Butterworth low-pass filter [24] to mitigate the

impact of ambient noise, which normally has a higher frequency.

Initially, the receiver obtains CSI from all subcarriers. We then

apply the PCA technique to decrease computational complexity by

Time (s)
0 2 4 6 8

A
m

p
lit

u
d
e

×10-3

6

8

10

12
Original CSI time series

Time (s)
0 2 4 6 8

A
m

p
lit

u
d
e

×10-3

8

10

12
After filter

1st

2nd

4th

3rd
5th

Figure 5: The CSI word group for the word “sense”.

6944 210963 3304 99 99 61 15

c9c12c11
 the boy was there when the sun rose

c1c2c3 c4c5c6 c7c8c9 c1c2c3c10c3 c1c2c3 c10c5c9c3c7c2c3c11CSI sample:
Input:

2 words 3 words 4 words 6 words 7 words 8 words 5 words

Csingle :

C joint :

112 112 112 8 249 112 112 249

Figure 6: The evolution of the amount of candidates re-
turned as words are processed.

converting the received CSI into a set of orthogonal components,

called principle components [30], which most represent the effects

of the keystrokes. The segmentation phase separates the full CSI

time series into the individual CSI samples corresponding to single

unknown keystrokes. After the receiver assigns the space character

to the most frequently appearing CSI sample group, the remaining

samples are grouped into CSI word groups. Figure 5 shows the CSI

word group for the word “sense”. The full data contains five CSI

samples caused by pressing the keys ‘s’, ‘e’, ‘n’, ‘s’, and ‘e’ as visible

on the figure. By using Dynamic Time Warping, we can classify

the five samples into three sets, including the pair of the first and

fourth samples, the pair of the second and fifth samples, and the

third sample alone.

Next, we illustrate how the collected CSI word groups can be

narrowed down to the typed content. We choose the Harvard sen-

tences [23] to be typed in for our experiments; these are phonetically

balanced sentences commonly used for testing speech recognition

techniques. For this example recovery, we randomly select five

sentences from these representative English sentences, with a total

of 41 words. While we process the collected CSI, we recordCsinдle ,
which is the number of words that have the same inter-element

relationship matrix as the current CSI word group under processing,

andCjoint , which is the number of candidates returned by the joint

demodulation algorithm for each CSI word group.

Figure 6 shows Csinдle and Cjoint during the processing of this

sentence. To facilitate understanding, we also mark the CSI sample

sets on this figure. For example, f1, f2, and f3 represent the CSI
sample sets caused by typing the letters ‘t’, ‘h’, ‘e’, respectively. We

can see thatCsinдle is 112 for three-letter words, and consequently

Cjoint increases dramatically from 112 to 6,944 and then to 210,963

as the second and third CSI word groups are added, as these word

Recovering words not in the dictionary:

The boy/box was there when the sun rose. A *** is used to
catch **** *****. The source of the huge river is the clear
spring. **** the ball straight and follow through. Help the
woman get back to her ****.

Input paragraph: The boy was there when the sun rose. A rod
is used to catch pink salmon. The source of the huge river is
the clear spring. Kick the ball straight and follow through.
Help the woman get back to her feet.

(1) rod; (2) pink; (3) salmon; (4) Kick; (5) feet.

Searching results: Step	
 1	

Step	
 2	

Figure 7: Example paragraph recovery.

groups share no common CSI samples. However, as more CSI word

groups are added, the joint demodulation algorithm finds more

common CSI samples, which shrinks the search space.Cjoint drops

sharply from 210,963 to 3,304 after the fourth CSI word group is

processed, and further reduces to 15 as the remaining CSI word

groups are processed.

After the demodulation phase, two candidates are returned as

shown in Figure 7. The two differ by only one word; the second

word is either “boy" or “box". Even for the wrong candidate, 97.6%

of the words are successfully recovered, and all characters except

one. The example paragraph also contains five words (“rod”, “pink”,

“salmon”, “kick”, and “feet”) that are not in the dictionary. These

are still successfully recovered, however, because their constituent

CSI samples also appear in other words, and their sample/letter

mappings have already been determined by the matching phase.

4.2 Eavesdropping Accuracy
We now quantify the general performance of our attack. We de-

fine the word recovery ratio as the ratio of successfully recovered

words to the total number of input words. We employ this metric

to ascertain the accuracy of our attack using 100 online articles ran-

domly selected from CNN, New York Times, and Voice of America.

For comparison purposes, we also apply the traditional frequency

analysis technique to the segmented CSI samples.

4.2.1 Single Article Recovery. We first type a piece of CNN news [2]

into a computer, and collect the CSI while typing. We then extract

the CSI samples and run the demodulation algorithm. Suppose the

demodulation algorithm returns N candidates for the typed content.

We useWRRi (i ∈ {1, · · · ,N }) to denote the word recovery ratio

for the ith candidate. We consider the overall word recovery ratio

WRR of the proposed attack to be calculated as the average of these

word recovery ratios for each candidate:WRR =
∑N
i=1

WRRi
N .

Figure 8 shows the overall word recovery ratio as a function of

the number of typed words. We can observe for the first couple of

typed words, the ratio is less than 0.17, because these words are

not in the dictionary or the joint demodulation algorithm returns

wrong candidates. As more words are typed in, the ratio increases

significantly and fluctuates, since newly typed words may or may

not be identified correctly in the various candidates. After a suffi-

cient number of words are typed, the mapping between CSI samples

and the alphabetic letters converges to only one candidate. As a

result, the word recovery ratio stabilizes at a high value. As shown

0 50 100
0

0.2

0.4

0.6

0.8

1

W
o
rd

 r
e
co

ve
ry

 r
a
tio

Number of typed words

Figure 8:WRR vs. word count

e t a o r i s n h d l c mp f u w b y k g v j q x z
0

0.1

0.2

(b) Letter frequency distribution in the typed content

e t a o i n s h r d l c umw f g y p b v k j x q z
0

0.1

0.2

(a) Letter frequency distribution in English

e t a o r i s n h d l c mp f u w b y k g v j q x z
-5

0

5

(c) Difference

Figure 9: Comparing distributions.

²  (1) Recover with frequency analysis

²  (2) Recovery with the proposed attack
police indicated they knew the identity of the
assailant who fatally stabbed unarmed police
officer

Typed content: police indicated they knew the
identity of the assailant who fatally stabbed
unarmed police officer

molnce nhdncated trep bheg tre ndehtntp ow tre
assanlaht gro watallp stayyed fhaiued molnce
owwncei

Figure 10: Recovered words.

Success rate of classification
0.4 0.5 0.6 0.7 0.8 0.9 1

W
o

rd
 r

e
co

ve
ry

 r
a

tio

0

0.2

0.4

0.6

0.8

1

1500-word dictionary

1000-word dictionary

500-word dictionary

Figure 11: Word recovery ratios vs. CSI
sample classification errors.

0 20 40 60
0

0.2

0.4

0.6

0.8

1

Number L of typed words

Em
pi

ric
al

 C
D

F

P (LWRR>0.8 < L)
P (LWRR>0.9 < L)

Figure 12: CDFs of LWRR>0.8
and LWRR>0.9.

Total number of words
50 100 150 200 250 300 350 400 450

W
o
rd

 r
e
c
o
v
e
ry

 r
a
ti
o

0

0.2

0.4

0.6

0.8

1

Frequecy analysis
The proposed attack

Figure 13: Frequency analysis vs. the
proposed attack.

in Figure 8, when more than 52 words have been typed, the overall

word recovery ratio remains above 0.96.

For meaningful results, we apply the frequency analysis recov-

ery technique to compare with our method. Figure 9(a) shows the

typical distribution of frequencies of English letters [16], while

Figure 9(b) shows the distribution of letters in the typed text. Be-

cause the typed text is short and not representative of the whole

English language, the sample distribution is not perfectly equal to

the typical distribution. This difference is highlighted in Figure 9(c)

and causes the word recovery ratio for the frequency analysis to be

as low as 0.07. Figure 10 shows parts of the recovery results using

the frequency analysis and our method. The content recovered us-

ing the frequency analysis is meaningless, whereas our new attack

successfully recovers the typed words.

Impact of CSI sample classification errors and dictionary
size: As discussed in Section 3.3.5, errors in grouping CSI samples

during the pre-processing step may occasionally lead to a failure in

demodulating a CSI word group when the pattern of the word is

not correctly detected. To test the impact of this on the overall word

recovery ratio, we artificially introduce errors into the groupings

and attempt the demodulation algorithm using the intentionally in-

correct data. Specifically, we vary the number of correctly grouped

CSI samples from 40% to 100% in intervals of 5%, and measure the

resulting overall word recovery ratio. We also examine the effects

of using dictionaries of three different sizes, including the 500, 1000,

and 1500 most frequently used words.

We repeat this experiment 10 times and present the average

results in Figure 11. Intuitively, more correctly classified CSI sam-

ples result in higher word recovery ratios, as do larger dictionaries.

Nonetheless, we also note that only 80% of CSI samples need be

correctly classified for the overall word recovery ratios to achieve

0.86, 0.81, and 0.7 for the various dictionary sizes.

4.2.2 Average Article Recovery. We repeat the above experiment for

100 online articles. Intuitively based on the discussed observations,

the proposed attack should achieve a high word recovery ratio for

a long text. Considering a desired overall word recovery ratio of 0.8

or 0.9, let LWRR>0.8 and LWRR>0.9 denote the required number of

typed words from each article to satisfy those ratios, respectively.

Figure 12 shows the empirical cumulative distribution functions

(CDFs) of LWRR>0.8 and LWRR>0.9, indicating conclusively longer

input text results in higher word recovery ratios. Specifically, for

more than 82.4% of articles, the achieved word recovery ratio is

greater than 0.8 and 0.9 when the number of these words is greater

than 27 and 42, respectively.

Figure 13 compares the efficacy of our attack and the frequency

analysis technique. Our attack can achieve a 0.82 word recovery

ratio after 50 typed words, whereas the frequency analysis requires

typing 150 words before any can be successfully recovered. Indeed,

the highest ratio achieved by the frequency analysis in these online

articles is around 0.1, after 450 words, while in stark contrast our

attack stabilizes around 0.95 after 150 words.

4.3 Time Complexity Analysis
As our attack requires no training, its processing time is naturally

of interest. The comparison of inter-element relationship matrices

is the dominant part of the demodulation phase of our dictionary

demodulation algorithm, so we count the required comparisons to

calculate complexity. Dictionary sizes have a bearing on this count,

as a larger dictionary results in more candidate words found for a

0 10 20 30 40 50
10

0

10
1

10
2

10
3

10
4

10
5

Number of words

N
e
w

 c
o
m

p
a
ri
so

n
 n

u
m

b
e
r

1500−word dictionary
1000−word dictionary
500−word dictionary

Figure 14: New comparisons vs. the num-
ber of processed words.

0 10 20 30 40 50
10

2

10
3

10
4

10
5

Number of words

T
o

ta
l c

o
m

p
a

ri
so

n
 n

u
m

b
e

r

1500−word dictionary
1000−word dictionary
500−word dictionary

Figure 15: Total comparisons vs. the
number of processed words.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Number of words

W
o

rd
 r

e
co

ve
ry

 r
a

tio

1500−word dictionary
1000−word dictionary
500−word dictionary

Figure 16: Recovery of volunteer-typed
“secrets".

CSI word group and thus a larger search space. Consequently we

examine the time complexity while using three different dictionar-

ies, which contain the top 500, 1000, and 1500 most frequently used

words [13].

During the 100 experiments discussed in Section 4.2, we count

the comparisons needed to generate candidates for the typed con-

tent each time a new CSI word group is added to the dictionary

demodulation process. Figure 14 shows the average comparison

number for each newly typed word, on a log scale. This number

greatly increases for the first few typed words but promptly de-

creases to a low value below 10 as more words are typed. This was

seen for a single sentence in Figure 6 and holds true for these 100

trials as well. The addition of more unique letters results in a vastly

enlarged search space, while the later inclusion of more repeated

letters imposes a structure to the words and quickly reduces the

search space again. For a 1500-word dictionary, the average num-

ber of required comparisons for the 4
th

word is 4.4 × 104, while it

becomes 1.6 for the 50
th

word.

Interestingly, the search space for a larger dictionary shrinks

faster than that of a smaller dictionary as more words are typed,

despite being larger after the first few words. For example, for

the 45
th

word, the average numbers of required comparisons for

the 1500-, 1000-, and 500-word dictionaries are 20.6, 39.7, and 70.1,

respectively. At first, a larger dictionary will find more matches

for the word structures searched, but this quickly narrows down

as repeated letters are added. Conversely, a smaller dictionary has

a lower probability of finding candidate words for a particular

structure, leading to skipped words, and therefore requiring more

typed words before repeated letters can appear and reduce the

search space.

Figure 15 shows the cumulative average comparison numbers

(i.e., the total time complexities) as more words are typed, for the

three dictionary sizes. The time is clearly spent mostly on inferring

the first couple of words, after which the total time complexity

stabilizes. This trend is the same for all dictionaries, though larger

dictionaries see distinctly more total comparisons and consequently

higher time complexity. Larger dictionaries also stabilize faster,

however; the 1500-, 1000-, and 500-word dictionaries stabilize at 8,

11, and 15 typed words, respectively.

4.4 An Example of the Attack
We recruited 10 volunteers and asked each of them to type a para-

graph of “secret" content for us to attempt to eavesdrop. For ethical

reasons, we did not ask them to type actual secrets or content that

they would wish to keep private, but simply to type comprehensible

English content which we did not provide them.

While each volunteer typed, the receiver continuously collected

CSI data, which was then processed and the eavesdropping result

presented to the volunteer. Volunteers compared the recovered

content with their typed content to quantify the word recovery rate

of the proposed attack. Figure 16 shows the resulting average word

recovery ratios as each word is typed and with the use of the three

different dictionary sizes. In practice, the proposed attack achieves

a word recovery ratio of more than 0.8 after 28 words are typed,

regardless of dictionary size. Additionally, a larger dictionary yields

a higher word recovery ratio. With more than 40 typed words and a

dictionary of 1,500 words, the ratio exceeds 0.94. This demonstrates

that the proposed attack can recover typed secrets effectively and

efficiently in a real-world setting.

4.5 Password Entropy Reduction
Modern password requirements include letters, numbers, and spe-

cial characters. The strength of a password lies in its resistance to

brute-force guessing attacks, and is a function of length, complex-

ity, and unpredictability. Our unobtrusive keyboard eavesdropping

attack focuses on inferring letters, but it can still greatly decrease

password strength. As users normally type both passwords and

comprehensive English content during typical computer usage, we

can apply the alphabet matching afforded by the latter to infer

significant portions of the former.

Typical users usually pick fewer non-letter characters in their

password in order to make it easy to remember, leaving the pass-

word more vulnerable to these attacks. We did preliminary exper-

iments to evaluate the entropy reduction impact using the pass-

word list, which contains 342,508 passwords leaked from Yahoo!

Voices [1]. Figure 17 shows the average ratios of letter characters in

passwords with different lengths.We observe that the ratio of letters

in a password with a length ranging from 6 to 12 lies between 0.65

to 0.73, and also with the key length increasing, the ratio of letters

slightly increases. Analyzing the leaked passwords, we found that

98.42% of passwords are 12 characters or fewer, and people utilize

an average of 8.72 letters for a 12-character password. This means

that the difficulty for guessing a 12-character random password is

reduced to that for guessing an extremely weak password of 3-4

characters. Furthermore, the attacker knows these 3-4 characters

are not English letters.

In this section, we quantify the damage our attack can inflict on

password entropy, the typical measure of password strength. The en-

tropy of a passwordX is defined asH (X) = −
∑n
i=1 P (xi)·log2 P (xi),

where xi (i ∈ {1,2, · · · ,n}) is one of n possible values of the pass-

word X and P (xi) represents the probability that X = xi holds.
Considering a keyboard housing N characters, a password with

length l selected at random has N l
possible values and l · log

2
N bits

of entropy. Suppose this password has l ′ letter characters and l − l ′

non-letter characters. The keyboard with N characters necessarily

contains 26 letters and N −26 non-alphabetical characters. Having
successfully established a full CSI sample/letter mapping and ap-

plying this mapping to the CSI samples comprising the password,

its entropy becomes (l − l ′) log
2
(N − 26) bits. As users typically

choose passwords mostly comprised of letters for ease of memory,

the proposed attack should reduce the entropy significantly.

In our experiment, we then randomly select 1000 9-character

passwords from the Yahoo! Voices dataset. 32 non-alphanumerical

characters are allowed in passwords, yielding 42 non-alphabetical

characters when factoring in numbers. However, we find that an

average 6.38 of 9 characters were letters, meaning their discovery

will vastly reduce entropy. Each of these 1000 passwords was added

to the end of the text typed by volunteers in the previous experi-

ment, and the resulting CSI sample/letter map was applied to each.

We compare the inferred password information to the original pass-

word, to identify the correctly recovered characters and calculate

the difference in password entropy.

Figure 18 plots the empirical probability mass functions (PMFs)

of the password entropies before and after the proposed attack is

applied, respectively. A randomly selected 9-character password

with the assumed keyboard layout provides 54.8 bits of entropy

and requires a maximum of 31.08 quadrillion brute force attempts.

After applying our attack, the password entropy can be decreased

to within a range of 5.4 to 27.0 bits, such that breaking a 9-character

password is reduced to guessing 1-5 non-letter characters. The max-

imum number of brute-force attack attempts targeting a password

with an entropy of 5.4 bits is just 42. In fact, 89.0% of the randomly

selected passwords have less than 16.2 bits of entropy after our

attack, which means that at most 74,000 brute-force attack attempts

are required for the vast majority of these passwords. Evidently,

the security of these passwords is decreased by several orders of

magnitude courtesy of the proposed attack.

5 DEFENSE DISCUSSION
The proposed attack explores the inter-element relationship matrix

to eavesdrop keystrokes. An intuitive defense solution is thus to

disrupt the attacker from obtaining the correct relationship. The

user may manually encrypt the words to be typed by using some

traditional substitution and permutation ciphers. However, this

approach is impractical, because it requires the user to calculate and

type in the ciphertext, an unintelligible string of random appearance

which would take much more time to type and incur numerous

Key length
6 7 8 9 10 11 12

R
a
ti
o
 o

f
le

tt
e
rs

0

0.2

0.4

0.6

0.8

Figure 17: Ratio of letters vs.
key length.

0	

0.2	

0.4	

0.6	

0.8	

1	

5.4	
 10.8	
 16.2	
 21.6	
 27	
 …	
 54.8	

Em
pi
ric
al
	
 P
M
F	

Password	
 entropy	

Before	
 aAack	

ADer	
 aAack	

Figure 18: The PMFs of pass-
word entropies.

input errors. The encryption also brings extreme computational

burden to the user.

In a more expedient fashion, the user may disrupt the inter-

element relationship among letters by randomly inserting a large

number of uncommonly used characters (e.g., \, <, >, and &) while

typing. Specifically, if the user inserts uncommon characters before

the first word, the matrix of the first observed CSI word group will

either match an incorrect word or not match with any word in the

dictionary, so the demodulation algorithm will return incorrect or

no candidates. In the former case, the attacker can still correctly

demodulate the following word if it shares no letters with the

previous. If no candidates are returned, the attacker will discard the

first observed CSI word group and start the demodulation algorithm

at the second observed CSI word group. Clearly in both cases,

to confuse subsequent words, the user must continue inserting

uncommon characters in each word.

To further mislead the attacker, the user can also construct se-

quences of uncommon characters with the same inter-element

relationship matrices as various words in the dictionary. The user

can type several of these “fake words” before inputting the mean-

ingful content, and continue typing fake words periodically. The

fake words can not only feed the attacker with wrong mappings

but also mislead the attacker with incorrect eavesdropping results.

To prevent the fake words from interfering with the meaningful

content, the user may employ a computer program that automati-

cally searches for and removes the uncommon characters or fake

words from the input text.

Beyond disrupting the inter-element relationship matrix, we

can also prevent the attacker from receiving useful CSI. Users can

employ a wireless jamming device that constantly transmits noise

signals to the wireless channel to interfere with the attacker’s trans-

missions. Thus the attacker will not be able to collect accurate CSI,

which is required for all wireless-based keyboard eavesdropping

attacks, including the proposed one. However, the user will have to

set up an external wireless device and turn it on whenever needing

to type. This method hasmore hardware demands than the previous,

but it does not require inserting many additional characters.

6 RELATEDWORK
Existing non-invasive attacks to infer keystrokes fall into the fol-

lowing categories:

Vibration based attacks: Typing on a keyboard can cause vibra-

tions on the surface where the keyboard rests, with subtle differ-

ences depending on keys typed [21, 26]. The accelerometer of a

nearby phone or tablet on the same surface can capture the vi-

brations. With training, an attacker can establish the relationship

between the keystroke and the acceleration disturbance caused by

the vibration. In the detection phase, the attacker can then recover

the typed content by applying this relationship.

Cai et al. discovered typing different keys on a soft keyboard on

a smartphone may also cause different vibrations [10]. Hence, an

invasive key inference attack can be constructed if the attacker can

install a key logging malware on the target phone. Recent research

has further discovered keystrokes can be inferred by exploiting

the accelerometer of a compromised smart smartwatch that a vic-

tim wears on the wrist [20, 35]. Under the assumption that the

attacker and the user may cause similar impact on accelerometer

measurement, the wrist movement trajectory may be used to recon-

struct the finger movement trajectory to determine what keys are

pressed. [20] novelly combines both accelerometer data and acous-

tic emanations acquired with a smartwatch to attack keyboards.

These methods using smartwatches [20, 35], however, require some

kind of malware to be installed on the wrist-worn device to read

the sensor data and report them to the adversary.

Acoustic signal based attacks: It has been observed typing on

a keyboard can produce sounds unique to each key. Researchers

extract features from these sounds and then train a classifier to re-

construct the keystrokes [7, 12, 37, 42]. Some work also exists which

relaxes the requirement for training. For example, [42] uses an statis-

tical unsupervised training method to design a supervised classifier.

However, the proposed method is faster than the method in [42]

for establishing the mapping between features and keystrokes. The

fundamental reason for this advantage is that the proposed method

is based on word structures whereas the method in [42] is based on

statistics. Specifically, the method in [42] uses the Hidden Markov

Model (HMM) for key recognition. HMM requires creating a statis-

tical Markov state transition matrix. Creating an accurate transition

matrix requires a large number of samples (features). For exam-

ple, [42] mentions that the attacker needs to collect 50 features for

good performance. This means that the state transition matrix is 50-

by-50, with each of these 2500 elements representing a state-to-state

transition probability. Such a transition matrix can be estimated

with reasonable accuracy only after the number of letters a user

types is 2500 or larger. Therefore, as discussed in [42], the HMM

method requires collecting 10 minutes worth of keystrokes (around

340 words) for a word recovery rate of 87.6%. This minimized train-

ing method may not function for wireless based attacks, as due to

the time-varying nature of the wireless channel, a training time of

10 minutes may be too long to generate a useful mapping between

observed CSI samples and letters. Unlike [42], frequency analysis,

and all other statistical methods, the proposed method explores the

self-contained structures of words, which can be observed for each

word immediately as it is typed, rather than probabilistic statistics

among words, which require many words to establish. Thus, the

proposed attack only needs 50 words within 1-2 minutes for a word

recovery rate of 94.3%.

An adversary may use a triangulation localization technique to

localize the sound source and accordingly infer which keys are

typed [19, 41]. This approach, however, requires the adversary to

have sophisticated equipment that can precisely measure the sound

propagation distance from the key to equipment, and also requires

line-of-sight between the keyboard and equipment. Both of these

requirements hinder attack plausibility and application. Berger et
al. infer keystrokes with the observation that similar sounds are

highly likely to come from keys positioned close to each other on

the keyboard [9]. This technique aims to reconstruct a single long

(7-13 characters) word that must appear in the dictionary, whereas

the goal of the proposed attack is to reconstruct the entire typed

content regardless of whether or not all its constituent words are

in the dictionary.

Timing based attacks: Keystroke timing patterns can be another

source to infer keystrokes [28, 32, 40]. For example, [32] infers

keystroke sequences by using the inter-keystroke timing infor-

mation collected from the arrival times of the SSH packets. [28]

proposes to infer keystrokes by utilizing the keystroke timing in-

formation gathered via cache-based load measurements on an idle

machine. [40] infers keystroke sequences by utilizing the shared

information on a multi-user system. However, except for the ways

to obtain the keystroke timing information (e.g., launching a SSH

session [32], installing a malicious virtual machine on the target

physical machine [28], owning a user account on a multi-core sys-

tem [40]), these timing-based attacks all require a training process

to statistically generate the attack models.

Wireless signal based attacks: There are emerging research efforts

performing keystroke eavesdropping attacks using wireless signals

due to the ubiquitous deployment of wireless infrastructures, the

radio signal nature of invisibility, and the elimination of the line-of-

sight requirement. In particular, [11] infers keystrokes by examining

the amplitude and phase changes of the wireless signal, and [6, 18]

utilize the channel condition extracted from the observed wireless

signal to distinguish keystrokes. All these works still require a

training process to construct the relationship between the observed

signal feature and the typing.

Camera-based attacks: A traditional and intuitive method to infer

keystrokes is to use cameras to record the typing process and then

identify keystrokes by analyzing the recorded video. Researchers

have found that video recording of handmovement [8, 31, 39], tablet

backside motion [33], or the shadow around fingertips [38], is also

able to aid the keystroke inference. However, when the movement

of interest does not happen in the presence of a camera, keystroke

activities cannot be detected.

Cryptanalysis based attacks: Cryptanalysis is a technique of dis-
covering secrets. Cryptanalysis attacks can be in the form of known-

plaintext or ciphertext-only attacks. If we consider the CSI sample

as the ciphertext and the original typed content as the plaintext,

the training-based keystroke inference attacks [6, 18] are indeed

known-plaintext attacks, because the attacker must know some

plaintext (i.e., typed content) and the corresponding ciphertext (i.e.,

CSI) for training. The proposedmethod does not require the training

data and thus it is a ciphertext-only attack. Existing ciphertext-only

attacks that attempt to decode the ciphertext of natural language

are largely based on the statistical information about the cipher-

text [22, 25]. For example, [25] regards the author of an instant

message conversation as the plaintext and applies character fre-

quency analysis to instant messages for authorship identification

and validation. [22] recovers the plaintext by using a statistical

language model and a dynamic programming algorithm.

Nevertheless, collecting statistical information implies that the

attacker needs to acquire a large amount of ciphertext. This may

not be suitable for the wireless based keystroke inference, because

collecting the wireless statistics does require a long time period

of observation. As mentioned earlier, this can prevent the attacker

from collecting sufficient reliable statistics for accurate keystroke

inference. The proposed method is based on the self-contained

feature of words instead and thus does not require the long-time

observation about wireless statistics.

7 CONCLUSION
We identify a new type of keystroke eavesdropping attack. Com-

pared with all previously discovered attacks, the attack reported

in this paper can bypass (1) the requirement of the training phase,

which is impractical for most attack scenarios, (2) the requirement

to deceive the user or bypass the user’s anti-virus and firewall

software to install malware on the target device, and (3) the re-

quirement of line-of-sight between the attacker’s device and the

keyboard. This attack is constructed based on the CSI extracted

from the wireless signal. An essential component to this attack is

a joint demodulation algorithm, which we create to establish the

mapping between each letter and the corresponding CSI sample

without training. We implement this attack on USRP X300 platform

running GNURadio, and conduct experiments to validate this attack.

The experiment results show that the word recovery ratio of the

proposed attack is 0.95 for an input of 150 words, whereas that of

the traditional frequency analysis method is less than 0.02.

ACKNOWLEDGEMENT
The authors would like to thank the anonymous reviewers for

the insightful comments and feedback. The authors at the Univer-

sity of South Florida were supported in part by NSF under grants

CNS-1527144, CNS-1553304, and CNS-1717969. The author at the

Shanghai Jiaotong University was supported by NSFC under grant

61672350.

REFERENCES
[1] 2017. 2012 Yahoo! Voices hack. https://en.wikipedia.org/wiki/2012_Yahoo!

_Voices_hack.

[2] 2017. London attack: Assailant shot dead after 4 killed near Parliament. http://

www.cnn.com/2017/03/22/europe/uk-parliament-firearms-incident/index.html.

[3] 2017. Statistical Distributions of English Text. http://www.data-compression.

com/english.html.

[4] Fadel Adib, Chen-Yu Hsu, Hongzi Mao, Dina Katabi, and Frédo Durand. 2015.

Capturing the Human Figure Through a Wall. ACM Trans. Graph. 34, 6, Article
219 (Oct. 2015), 13 pages.

[5] Fadel Adib and Dina Katabi. 2013. See Through Walls with WiFi!. In Proceedings
of the 2013 ACM Conference on SIGCOMM (SIGCOMM ’13). ACM, Hong Kong,

China, 75–86.

[6] Kamran Ali, Alex X. Liu, Wei Wang, and Muhammad Shahzad. 2015. Keystroke

Recognition Using WiFi Signals. In Proceedings of the 21st Annual International
Conference on Mobile Computing and Networking (MobiCom ’15). ACM, Paris,

France, 90–102.

[7] Dmitri Asonov and Rakesh Agrawal. 2004. Keyboard acoustic emanations. In

Proceedings of the IEEE Symposium on Security and Privacy. IEEE Computer

Society, 3–11.

[8] Davide Balzarotti, Marco Cova, and Giovanni Vigna. 2008. ClearShot: Eavesdrop-

ping on Keyboard Input from Video. In Proceedings of the IEEE Symposium on
Security and Privacy. IEEE Computer Society, 170–183.

[9] Yigael Berger, Avishai Wool, and Arie Yeredor. 2006. Dictionary Attacks Using

Keyboard Acoustic Emanations. In Proceedings of the 13th ACM Conference on
Computer and Communications Security (CCS ’06). ACM, Alexandria, Virginia,

USA, 245–254.

[10] Liang Cai and Hao Chen. 2011. TouchLogger: Inferring Keystrokes on Touch

Screen from Smartphone Motion. In Proceedings of the 6th USENIX Conference on
Hot Topics in Security (HotSec’11). USENIX Association, San Francisco, CA.

[11] Bo Chen, Vivek Yenamandra, and Kannan Srinivasan. 2015. Tracking Keystrokes

Using Wireless Signals. In Proceedings of the 13th Annual International Conference
on Mobile Systems, Applications, and Services (MobiSys ’15). ACM, Florence, Italy,

31–44.

[12] Alberto Compagno, Mauro Conti, Daniele Lain, and Gene Tsudik. 2017. Don’T

Skype & Type!: Acoustic Eavesdropping in Voice-Over-IP. In Proceedings of the
2017 ACM on Asia Conference on Computer and Communications Security (ASIA
CCS ’17). ACM, Abu Dhabi, United Arab Emirates, 703–715.

[13] Mark Davies. 2017. Word frequency data from the Corpus of Contemporary

American English (COCA). http://www.wordfrequency.info/free.asp.

[14] Matt Ettus. 2005. USRP user’s and developer’s guide. Ettus Research LLC.

[15] Andrea Goldsmith. 2005. Wireless Communications. Cambridge University Press,

New York, NY, USA.

[16] Jonathan Katz and Yehuda Lindell. 2007. Introduction to Modern Cryptography
(Chapman & Hall/Crc Cryptography and Network Security Series). Chapman &

Hall/CRC.

[17] Swarun Kumar, Ezzeldin Hamed, Dina Katabi, and Li Erran Li. 2014. LTE Radio

Analytics Made Easy and Accessible. In Proceedings of the 2014 ACM Conference
on SIGCOMM (SIGCOMM ’14). ACM, Chicago, Illinois, USA, 211–222.

[18] Mengyuan Li, Yan Meng, Junyi Liu, Haojin Zhu, Xiaohui Liang, Yao Liu, and Na

Ruan. 2016. When CSI Meets Public WiFi: Inferring Your Mobile Phone Password

via WiFi Signals. In Proceedings of the 23Nd ACM SIGSAC Conference on Computer
and Communications Security (CCS ’16). ACM, Vienna, Austria, 1068–1079.

[19] Jian Liu, Yan Wang, Gorkem Kar, Yingying Chen, Jie Yang, and Marco Gruteser.

2015. Snooping Keystrokes with Mm-level Audio Ranging on a Single Phone. In

Proceedings of the 21st Annual International Conference on Mobile Computing and
Networking (MobiCom ’15). ACM, Paris, France, 142–154.

[20] Xiangyu Liu, Zhe Zhou, Wenrui Diao, Zhou Li, and Kehuan Zhang. 2015. When

Good Becomes Evil: Keystroke Inference with Smartwatch. In Proceedings of the
22Nd ACM SIGSAC Conference on Computer and Communications Security (CCS
’15). ACM, Denver, Colorado, USA, 1273–1285.

[21] Philip Marquardt, Arunabh Verma, Henry Carter, and Patrick Traynor. 2011.

(Sp)iPhone: Decoding Vibrations from Nearby Keyboards Using Mobile Phone

Accelerometers. In Proceedings of the 18th ACM Conference on Computer and
Communications Security (CCS ’11). ACM, Chicago, Illinois, USA, 551–562.

[22] Joshua Mason, Kathryn Watkins, Jason Eisner, and Adam Stubblefield. 2006.

A Natural Language Approach to Automated Cryptanalysis of Two-time Pads.

In Proceedings of the 13th ACM Conference on Computer and Communications
Security (CCS ’06). ACM, Alexandria, Virginia, USA, 235–244.

[23] IEEE Subcommittee on Subjective Measurements. 1969. IEEE Recommended

Practice for Speech Quality Measurements. IEEE Transactions on Audio and
Electroacoustics 17, 3 (Sep 1969), 227–246.

[24] Alan V. Oppenheim, Alan S. Willsky, and S. Hamid Nawab. 1996. Signals &
Systems (2Nd Ed.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[25] Angela Orebaugh. 2006. An Instant Messaging Intrusion Detection System

Framework: Using character frequency analysis for authorship identification and

validation. In Proceedings 40th Annual 2006 International Carnahan Conference on
Security Technology. 160–172.

[26] Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, and Joy Zhang. 2012.

ACCessory: Password Inference Using Accelerometers on Smartphones. In Pro-
ceedings of the Twelfth Workshop on Mobile Computing Systems and Applications
(HotMobile ’12). ACM, San Diego, California, Article 9, 6 pages.

[27] Qifan Pu, Sidhant Gupta, Shyamnath Gollakota, and Shwetak Patel. 2013. Whole-

home Gesture Recognition Using Wireless Signals. In Proceedings of the 19th
Annual International Conference on Mobile Computing and Networking (MobiCom
’13). ACM, New York, NY, USA, 27–38.

[28] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009.

Hey, You, Get off of My Cloud: Exploring Information Leakage in Third-party

Compute Clouds. In Proceedings of the 16th ACM Conference on Computer and
Communications Security (CCS ’09). ACM, Chicago, Illinois, USA, 199–212.

[29] Stan Salvador and Philip Chan. 2007. Toward Accurate Dynamic Time Warping

in Linear Time and Space. Intell. Data Anal. 11, 5 (Oct. 2007), 561–580.
[30] Jonathon Shlens. 2014. A Tutorial on Principal Component Analysis. CoRR

abs/1404.1100 (2014). http://arxiv.org/abs/1404.1100

[31] Diksha Shukla, Rajesh Kumar, Abdul Serwadda, and Vir V. Phoha. 2014. Beware,

Your Hands Reveal Your Secrets!. In Proceedings of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS ’14). ACM, Scottsdale,

Arizona, USA, 904–917.

[32] Dawn Xiaodong Song, David Wagner, and Xuqing Tian. 2001. Timing Analysis

of Keystrokes and Timing Attacks on SSH. In Proceedings of the 10th Conference
on USENIX Security Symposium - Volume 10 (SSYM’01). USENIX Association,

Washington, D.C., Article 25.

[33] Jingchao Sun, Xiaocong Jin, Yimin Chen, Jinxue Zhang, Rui Zhang, and Yanchao

Zhang. 2016. VISIBLE: Video-Assisted Keystroke Inference from Tablet Backside

Motion. In Proceedings of the 23th Annual Network and Distributed System Security

https://en.wikipedia.org/wiki/2012_Yahoo!_Voices_hack
https://en.wikipedia.org/wiki/2012_Yahoo!_Voices_hack
http://www.cnn.com/2017/03/22/europe/uk-parliament-firearms-incident/index.html
http://www.cnn.com/2017/03/22/europe/uk-parliament-firearms-incident/index.html
http://www.data-compression.com/english.html
http://www.data-compression.com/english.html
http://www.wordfrequency.info/free.asp
http://arxiv.org/abs/1404.1100

Conference (NDSS ’16). The Internet Society, San Diego, California, USA.

[34] Guanhua Wang, Yongpan Zou, Zimu Zhou, Kaishun Wu, and Lionel M. Ni. 2014.

We Can Hear You with Wi-Fi!. In Proceedings of the 20th Annual International
Conference on Mobile Computing and Networking (MobiCom ’14). ACM, Maui,

Hawaii, USA, 593–604.

[35] He Wang, Ted Tsung-Te Lai, and Romit Roy Choudhury. 2015. MoLe: Motion

Leaks Through Smartwatch Sensors. In Proceedings of the 21st Annual Interna-
tional Conference on Mobile Computing and Networking (MobiCom ’15). ACM,

Paris, France, 155–166.

[36] Jue Wang and Dina Katabi. 2013. Dude, Where’s My Card?: RFID Positioning

That Works with Multipath and Non-line of Sight. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM (SIGCOMM ’13). ACM, Hong Kong,

China, 51–62.

[37] Junjue Wang, Kaichen Zhao, Xinyu Zhang, and Chunyi Peng. 2014. Ubiqui-

tous Keyboard for Small Mobile Devices: Harnessing Multipath Fading for Fine-

grained Keystroke Localization. In Proceedings of the 12th Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys ’14). ACM,

Bretton Woods, New Hampshire, USA, 14–27.

[38] Qinggang Yue, Zhen Ling, Xinwen Fu, Benyuan Liu, Kui Ren, andWei Zhao. 2014.

Blind Recognition of Touched Keys on Mobile Devices. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security (CCS ’14).
ACM, Scottsdale, Arizona, USA, 1403–1414.

[39] Qinggang Yue, Zhen Ling, Wei Yu, Benyuan Liu, and Xinwen Fu. 2015. Blind

Recognition of Text Input on Mobile Devices via Natural Language Processing.

In Proceedings of the 2015 Workshop on Privacy-Aware Mobile Computing (PAMCO
’15). ACM, Hangzhou, China, 19–24.

[40] Kehuan Zhang and Xiaofeng Wang. 2009. Peeping Tom in the Neighborhood:

Keystroke Eavesdropping on Multi-User Systems. In Proceedings of the 18th Con-
ference on USENIX Security Symposium (SSYM’09). USENIX Association, Montreal,

Canada, 17–32.

[41] Tong Zhu, Qiang Ma, Shanfeng Zhang, and Yunhao Liu. 2014. Context-free

Attacks Using Keyboard Acoustic Emanations. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’14). ACM,

Scottsdale, Arizona, USA, 453–464.

[42] Li Zhuang, Feng Zhou, and J. D. Tygar. 2005. Keyboard Acoustic Emanations

Revisited. In Proceedings of the 12th ACM Conference on Computer and Communi-
cations Security (CCS ’05). ACM, Alexandria, VA, USA, 373–382.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Channel State Information
	2.2 Existing Work on CSI-based Keystroke Inference

	3 Attack Design
	3.1 System Overview
	3.2 CSI word group generation
	3.3 Dictionary Demodulation

	4 Experiment Results
	4.1 Example Recovery Process
	4.2 Eavesdropping Accuracy
	4.3 Time Complexity Analysis
	4.4 An Example of the Attack
	4.5 Password Entropy Reduction

	5 Defense Discussion
	6 Related Work
	7 Conclusion
	References

